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“Nip it in the Bud!” 

Managing the Opioid Crisis: Supply Chain Response to Anomalous Buyer Behavior 

 

Abstract 

 

Over the past three decades, the opioid epidemic has wreaked havoc upon thousands of communities across 

the US. In this study, we provide a supply-chain perspective to manage the ongoing opioid crisis. Using the 

ARCOS database -- which tracks opioid drug shipments across the entire supply chain in the US, spanning 

the period 2006 to 2012 -- we employ a novel anomaly detection algorithm to detect suspicious buyer 

activity. Our algorithm is non-intrusive on patient privacy, in that it does not rely on prescription-level data 

(from drug retailers or physicians). Using a random sample of 50,000 drug retailers, plus a set of 188 retail 

buyers who are labeled, using observed convictions from the Drug Enforcement Administration (DEA) 

website, as “suspicious”, we train our anomaly detection algorithm to detect suspicious retail buyers based 

on their historical opioid buying patterns. Our anomaly detection algorithm, which is built on a training set 

of 25,000 drug retailers, yields an F-1 score of 61 % (with a precision of 100 %) in terms of correctly 

detecting suspicious retail buyers in a validation set of 25,188 drug retailers (which includes the 188 

convicted retail buyers). While we employ a total of 40 input variables to train the anomaly detection 

algorithm, it ultimately relies upon only 7 input variables to achieve its impressive predictive accuracy. By 

applying our algorithm on real-time opioid shipments data as and when orders are placed by drug retailers 

around the country, manufacturers and distributors within the supply chain, as well as the DEA, can flag 

those that are tagged as suspicious for further investigation. By halting large shipments of opioids through 

early identification of suspicious orders placed by either (willfully or otherwise) negligent, or outright 

criminal, activities, these dangerous drugs can be prevented from reaching vulnerable communities, thus 

saving lives. 

 

Keywords: Opioid Crisis, Opioid Diversion, Suspicious Shipments, ARCOS Data, Anomaly Detection. 
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Introduction 

While new vaccines offer hope in the battle against the COVID-19 pandemic, the destructive effect 

of the opioid epidemic continues to be felt across thousands of vulnerable communities across the US, 

affecting the lives of millions of US families and tens of millions of US citizens. According to the Center 

for Disease Control (CDC), from 1999 – 2019, nearly 500,000 Americans have died from an overdose 

involving any opioid, including prescription and illicit opioids (see Figure 1 for a chronological timeline of 

opioid overdose deaths in the US). The number of drug overdose deaths in 2019 was 70,630 of which 70 

% involved an opioid. The US contains 4.4 % of the world’s population, but consumes 30.2 % of the world’s 

opioids, and accounts for 27 % of the world’s opioid overdose deaths. Aggressive marketing practices have 

been implicated as being complicit in the outbreak of drug abuse (Meier 2018). Recently, the Drug 

Enforcement Administration (DEA) launched an aggressive effort to monitor physician prescriptions and 

pharmacist fulfillment. In 2019, by order of the sixth circuit court of appeals, a database called ARCOS, 

established by the Drug Enforcement Administration (DEA) to track the manufacturing and distribution of 

all prescription drugs, was made available to the public spanning the period 2006-2012. In this research, 

we aim to address the opioid scourge in our communities by focusing on the question of whether suspicious 

orders of opioid drugs could be stopped at the source – even before they get in to the hands of those at risk. 

We employ a novel anomaly detection algorithm on the ARCOS database to detect suspicious activity to 

tackle the pernicious issue of illegal drug diversion by retailers. 

[Insert Figure 1] 

Our algorithm is non-intrusive on patient privacy, in that it does not rely on personally identifiable, 

prescription-level data from drug retailers or physicians.1 Instead, we analyze longitudinal buying patterns 

of retail buyers, in terms of how much of a given opioid drug that each retail drug buyer orders from a given 

drug wholesaler at any given point in time. Using a random sample of 50,000 drug retailers, plus a set of 

                                                 
1 Prescription drug monitoring programs (PDMPs), in contrast, are state-run electronic databases that track opioid 
prescriptions. They help health providers identify specific patients at risk of opioid misuse. 
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188 retail buyers who are labeled, using observed convictions from the DEA website, as “suspicious”, we 

train our anomaly detection algorithm to detect suspicious buyers based on their historical opioid buying 

patterns. Our anomaly detection algorithm, which is built on a training set of 25,000 drug retailers, yields 

an F-1 score of 61 % (with a precision of 100 %) in terms of correctly detecting suspicious buyers in a 

validation set of 25,188 drug retailers (which includes the 188 convicted buyers). While we employ a total 

of 40 input variables to train the anomaly detection algorithm, it ultimately relies upon only 7 input variables 

to achieve its impressive predictive accuracy. Our algorithm outperforms other, more traditionally 

employed, AI algorithms on anomaly detection. 

By applying our algorithm on real-time opioid shipments data as and when orders are placed by 

drug retailers around the country, manufacturers and distributors within the supply chain, as well as the 

DEA, can flag those that are tagged as suspicious for further investigation. By halting large shipments of 

opioids through early identification of suspicious orders placed by either (willfully or otherwise) negligent, 

or outright criminal, activities, these dangerous drugs can be prevented from easily reaching vulnerable 

communities, thus saving lives. 

The rest of the paper is organized as follows. Section 2 presents a historical background on the 

opioid crisis in the US. In section 3, we offer a brief literature review. Section 4 explains the ARCOS data. 

In section 5, we explicate our novel anomaly detection algorithm, in relation to four other popular anomaly 

detection algorithms from the AI literature, as a predictive tool to detect suspicious buyers (drug retailers) 

based on their historical buying patterns. In section 6, we document the empirical performance of our 

predictive algorithm in terms of detecting suspicious buyers.  Section 7 concludes with policy implications. 

 

Background on the Opioid Crisis 

During the nineteenth century, morphine was isolated from opium and used to treat battlefield 

injuries. Morphine also came to be used to treat joint pain, menstrual cramps, etc. Eventually, morphine 

addiction rates spiraled out of control and its use was prohibited. A new, ostensibly less addictive, opioid 
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was born - heroin. History repeated itself when heroin addiction then became a serious concern. The US 

government passed the Harrison Act in 1914, which restricted the use of heroin and other opioids. Over the 

next several decades, the US successfully weaned itself out of opioid use. By the 1980s, with the advent of 

the hospice movement, there was a feeling that the elderly, cancer patients, people seriously injured in 

accidents, etc. were being horrendously under-treated by not being prescribed opioids for pain. The medical 

community once again turned to opioids. In the early 1990s, a group of influential academics pushed and 

advocated the use of strong opioids to treat even ordinary kinds of pain. The watershed moment was Purdue 

Pharma’s introduction in 1996 of OxyContin2, which was heralded as a “wonder” drug for pain treatment.3 

OxyContin set the stage for the opioid overdose epidemic. Purdue Pharma argued that millions of people 

were suffering unnecessarily because doctors had exaggerated public fears about the addictive potential of 

prescription painkillers. In order to distance the drug from the bad connotations associated with the term 

“narcotic” the word “opioid” was coined as part of OxyContin’s branding effort. Purdue Pharma launched 

an aggressive marketing campaign that targeted doctors to influence their prescribing behavior for 

OxyContin. Data analysis was used to identify which doctors had the most chronic pain patients, which 

doctors were more likely to prescribe pain medication even for mild pain etc. Purdue dispatched large sales 

forces specifically to these doctors. 

Over the next decade, the Rust Belt and Appalachian states (PA, OH, WV) became most badly hit 

by opioid overdose deaths primarily because of OxyContin use. Huntington, WV, came to be called the 

overdose capital of America. Many of these regions were blue-collar, with many workers getting injured in 

their line of work (construction, oil refining, etc.) and, therefore, being prescribed opioids to treat their pain. 

The oversupply of prescription painkillers created increasing demand which led to unethical doctors 

prescribing opioids for cash payments (see the Netflix documentary, “The Pharmacist” which features a 

pediatrician in Louisiana, whose license was eventually revoked, who wrote 183,000 pain prescriptions for 

                                                 
2 Purdue Pharma’s main source of revenue, MSContin, a morphine pill for cancer patients, saw its patent expiring 
which led to the development of OxyContin. 
3 Unlike Motrin, which was an over-the-counter (OTC) painkiller, OxyContin was a prescription painkiller. It replaced 
Vicodin as the most abused prescription painkiller in the US. 
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adults over a year). This led to more overdose deaths. OxyContin was fundamentally different from older, 

classic opioid pain prescription medications, such as Percocet and Vicodin. While older drugs had a dosage 

range per pill of 2.5 – 10 mg of Oxycodone (an opioid 50% stronger than morphine), OxyContin had a 

dosage range of 10 – 80 mg of Oxycodone. The extremely potent Oxycodone, in addition to blocking pain 

signals in the nerves, bound to opioid receptors in the reward parts of the brain, thus elevating dopamine 

levels and giving users an immediate rush of energy and a drug-induced high. Taking Oxycodone daily was 

like taking heroin daily and, unsurprisingly, led to severe addiction. At its peak, OxyContin sales exceeded 

Viagra sales. Purdue’s profits hit $3b by 2010 before they paid fines of $700m after being convicted of 

misrepresenting the opioid abuse liability. By 2012, opioid prescriptions covered 80 % of Americans. 

Opioids are currently regulated under Schedule 2 of the Controlled Substances Act (CSA), which 

represents substances deemed to have a high potential for abuse which may lead to severe psychological or 

physical dependence. Also called narcotics, opioids include hydromorphone, methadone, meperidine, 

oxycodone, fentanyl, morphine, opium, codeine, hydrocodone etc. From 2006 to 2014, 100b prescription 

hydrocodone and oxycodone pills were distributed in the US. The opioid epidemic has cost the US $1t from 

2001 to 2017 (Altarum 2021). 

With the rising backlash against opioid manufacturers in the wake of the opioid epidemic, two 

opioid manufacturers – Mallinckrodt, Purdue Pharma – have filed for bankruptcy. The US government 

recently reached a $26b settlement with three opioid distributors – Cardinal Health, McKesson, 

AmeriSource Bergen – and an opioid manufacturer – Johnson & Johnson (J&J) – in August 2021. The three 

opioid distributors also agreed to pay $1.18b to NY, and Nassau and Suffolk counties. J&J agreed to pay 

$230m to settle opioid claims in NY. These lawsuits alleged that distributors failed to flag and halt a rising 

tide of suspicious orders of pain pills. Addressing this issue, and enabling distributors to have a predictive 

system that can be used to flag and halt suspicious orders of opioid drugs, is the central focus of this study. 
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Literature Review 

A handful of researchers in the management sciences and economics have studied drug abuse. 

Zaric, Brandeau and Barnett (2000) assess the cost effectiveness of maintenance treatment for heroin 

addiction, with emphasis on its role in preventing HIV infection. The authors measure the health benefits 

of methadone maintenance in terms of life years gained. Corman and Mocan (2000) study whether drug 

abuse leads to an increase in violence and other crimes, as is commonly believed by many policy makers.4 

Using a unique dataset from the Crime Analysis Unit of the NYPD that tracks both monthly crimes and 

drug-related deaths, the authors find that drug usage has only a small effect on some property crimes. 

Liu and Bharadwaj (2020) study the impact of digital platforms in contributing to the ongoing drug 

overdose epidemic. Relying on the phased rollout of Craigslist as an experimental setup, and applying a 

difference-in-differences approach on a national panel dataset for all counties in the US from 1997 to 2008, 

they find a 14.9 % increase in drug abuse treatment admissions, a 5.7 % increase in drug abuse violations, 

and a 6 % increase in drug overdose deaths after Craigslist’s entry. The impacts of Craigslist’s entry are 

found to be larger among women, whites, Asians, and the more educated. Further, the unintended 

consequences of Craigslist are found to be more likely to accrue in larger, wealthier areas with initially low 

levels of drug abuse. 

Zheng and Alba (2021) argue that since drug addiction has been established as a biological 

morbidity by neuroscience research, the public now feels increasing sympathy for the drug abuse problem 

rather than viewing it as reflecting moral failures in self-control. This evolution in societal understanding 

of drug abuse, therefore, has important marketing implications in terms of how to communicate public 

policy solutions for the problem to the general public. Puntoni et al. (2021) review the role of AI 

technologies in improving consumers’ lives in very concrete and relevant ways these days. For example, 

Express Scripts is using wearable devices to monitor whether and when their patients are at risk of drug 

                                                 
4 There are three testable hypotheses underlying this belief: (1) drug use increases aggression and, therefore, violent 
crime; (2) drug users turn to crime to finance expenditures on drugs; (3) violence occurs in the drug market because 
participants cannot rely on contracts and courts to resolve disputes. 
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overdose so that remedial actions can be taken immediately. Zhang and King (2021) study the effects of 

physicians’ contentious prescribing practices with regard to opioids – specifically, benzodiazepines (a key 

contributor to the drug epidemic) -- on the strengths of their social ties within physician networks. Bobroske 

et al. (2021) study the impact of operational interventions on long-term opioid use. Using a nationwide US 

database of medical and pharmaceutical claims, the authors find that follow-up appointment within 30 days 

of opioid initiation with a clinician other than the initial prescriber reduces the likelihood of long-term 

opioid use by 31 %. 

In a recent article, Chandy et al. (2021) exhort the marketing discipline to recognize that marketers 

are an integral part, either as a cause or as a source of a solution, for grave societal problems. The authors 

discuss the growing importance for today’s marketing academics and practitioners to redefine marketing’s 

role in creating a better world. Our research responds to their call for action. 

 

Data 

The DEA maintains a database, Automated Reports and Consolidated Ordering System (ARCOS), 

to track the manufacturing and distribution of all prescription drugs, inclusive of opioids. The database 

tracks the path of every single pain pill sold in the US – by manufacturers to distributors, and by distributors 

to pharmacies and practitioner clinics – in every town and city in the United States. HD Media won a year-

long battle in 2019 for access to the database from court filings resulting in the release of all activity from 

the years 2006 to 2012. The Washington Post published part of the data.  In Figure 2, we present the 

distribution channel system for opioids. Manufacturers of opioid drugs include Purdue, Endo, Pfizer, 

Janssen, Mallinckrodt etc. Our focus is not on opioid shipments from manufacturers to distributors. Instead, 

we focus on opioid shipments from distributors to retailers. (Note: transactions from retailers to patients 

are not observed in the data). 

[INSERT FIGURE 2] 
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There are a total of 9372 unique opioid stock keeping units (SKUs), also referred to as opioid 

products, in the ARCOS data. If one considered the active process ingredients (APIs) that are contained 

within these opioid products, there are 170 unique APIs in the data. In other words, the 9372 unique opioid 

products are simply different chemical combinations of these 170 unique APIs. If one went down one more 

level and considered the drug compounds, also called drug products (DPs), which are contained within the 

APIs, there are 14 unique DPs in the data. This breakdown from opioid products to APIs to DPs are 

diagrammatically explained in Figure 3. 

In Figure 3, we also present the relative shares of the 14 DPs in terms of their observed sales 

volumes, represented in morphine milligram equivalents (MME), which are calculated as follows: MME = 

(Drug Dosage Units) * (Drug Dosage Strength per Unit) * (MME Conversion Factor from Drug Dosage to 

Morphine Milligrams).5 Hydrocodone enjoys the largest share (40 %), with Oxycodone coming second (23 

%). Out of the 14 DPs, just 4 (Hydrocodone, Oxycodone, Fentanyl, Morphine) account for 84 % of all sales 

volume in the data. 

[INSERT FIGURE 3] 

Table 1 lists the top 50 best-selling opioid products during the period of study (2006-2012). One 

can see that 23 out of the top 50 opioid products contain hydrocodone, while 11 contain oxycodone, as the 

ingredient drug. This is not surprising since hydrocodone has been, by far, the most prescribed drug product 

for acute and chronic pain. The infamous OxyContin pill figures thrice in the top 50 list: 40 mg Oxycodone 

HCl form is ranked 33rd, Oxycodone HCl controlled form is ranked 35th, and 80 mg Oxycodone HCl form 

is ranked 43rd. 

[INSERT TABLE 1] 

The ARCOS database contains a total of 277,000 + unique buyers (drug retailers, physician clinics 

etc.) making over 400 million transactions over the six-year period. We tag a subset of 188 among these 

                                                 
5 Since different opioid products are sold in different form (e.g., pill versus cap) and dosage strength (e.g., 20 mg 
versus 40 mg), MME, which represents the effective amount of morphine milligrams contained in the product, 
represents a standardized unit of sales volume across opioid products. 
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buyers, using observed convictions and revocations of registration that are published on the DEA website 

and cross-referencing the convicted buyers’ DEA IDs with the corresponding buyer IDs in the ARCOS 

data, as suspicious buyers. From the remaining buyers in the ARCOS data, we randomly sample 50,000 

buyers and split them in to two sets, a training set and a validation set. We add the 188 suspicious buyers 

to the validation set. This yields a training set with 25,000 (unlabeled) buyers, and a validation set with 

25,188 buyers, i.e., 25,000 (unlabeled) buyers plus 188 (labeled) suspicious buyers. This is explained in 

diagrammatic form in Figure 4. Suspicious buyers can be considered to be a very small percentage of the 

general population of retail buyers of opioid products, so it would be fair to assume that unlabeled buyers 

largely represent legitimate buyers of opioid products. 

[INSERT FIGURE 4] 

We overlay the 188 suspicious buyers on the US map in Figure 5. Unsurprisingly a majority of 

suspicious buyers fall within the Rust Belt and the Appalachian Belt, two regions that were severely 

afflicted with opioid addiction and overdose deaths during the period of our data. A vast majority (138) of 

the suspicious buyers are found to be medical practitioners, which is consistent with popular reports in the 

press that “pill mills” operated by unethical physicians have played an instrumental role in the drug 

diversion problem. The second largest category of suspicious buyers are retail (mom-and-pop) pharmacies, 

which is consistent with the Netflix documentary, “The Pharmacist” that features small pharmacies that 

dispensed huge amounts of pain pills to addicts. 

[INSERT FIGURE 5] 

In Table 2, we present some descriptive statistics on three groups of buyers: (1) training set - 

unlabeled, (2) validation set – unlabeled, (3) validation set – suspicious. Some interesting findings are 

evident in the table. In terms of the average MME purchased per transaction, suspicious buyers buy almost 

10 times (~ 2.4 million) as much as unlabeled buyers (~ 250,000). In terms of median MME purchased per 

transaction, suspicious buyers buy almost 20 times (~ 700,000) as much as unlabeled buyers (~ 37,000). In 

terms of the standard deviation of MME across transactions, suspicious buyers exhibit much more variation 

(~ 39 million) than unlabeled buyers (~ 15 million). Therefore, suspicious buyers not only buy more MME 
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per transaction, on average, but also display greater temporal variation in their purchase quantities of MME. 

If we look at the share of each opioid product within the total quantity of MME purchased by each buyer 

over the 6-year period (2006-2012), two interesting findings are observed in the table: one, Oxycodone 

accounts for about 20 % of a suspicious buyer’s MME purchases, on average, but only about 4 % for an 

unlabeled buyer; two, Fentanyl accounts for only 8 % of a suspicious buyer’s MME purchases, despite 

accounting for 30 % of an unlabeled buyer’s MME purchases. Another interesting finding in Table 2 is that 

suspicious buyers buy fewer unique opioid SKUs (~ 38) than unlabeled buyers (~56). 

[INSERT TABLE 2] 

Based on Table 2, it is clear that suspicious buyers are different from unlabeled buyers in some 

discernible ways with regard to their observed purchase behavior of opioids. This suggests that an anomaly 

detection algorithm that is trained to distinguish suspicious buyers from unlabeled buyers may be well 

informed by the inclusion of input variables such as those listed in Table 2. In order to be comprehensive 

in our inclusion of relevant input variables, we construct a total of 40 input variables which are different 

variations of the basic set of input variables that are listed in Table 2. The 40 input variables are listed 

below: 

1. Average MME per Transaction (X1), 

2. Standard Deviation of MME per Transaction (X2), 

3. Median MME per Transaction (X3), 

4. Maximum MME per Transaction (X4), 

5. Maximum Minus Median MME per Transaction (X5) 

6. Coefficient of Variation of MME per Transaction (X6), i.e., X2 / X1, 

7. Average MME per Day (X7), 

8. Standard Deviation of MME per Day (X8), 

9. Median MME per Day (X9), 

10. Maximum MME per Day (X10), 

11. Maximum Minus Median MME per Day (X11), 
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12. Average MME per Day per Person (X12), 

13. Standard Deviation of MME per Day per Person (X13), 

14. Median MME per Day per Person (X14), 

15. Maximum MME per Day per Person (X15), 

16. Maximum Minus Median MME per Day per Person (X16), 

17. Average MME per Day per Old Person (X17), 

18. Standard Deviation of MME per Day per Old Person (X18), 

19. Median MME per Day per Old Person (X19), 

20. Maximum MME per Day per Old Person (X20), 

21. Maximum Minus Median MME per Day per Old Person (X21), 

22. Hydrocodone Share (X22), 

23. Oxycodone Share (X23), 

24. Fentanyl Share (X24), 

25. Morphine Share (X25), 

26. Hydrocodone + Oxycodone Share (X26), 

27. Hydrocodone + Oxycodone + Fentanyl Share (X27), 

28. Hydrocodone + Oxycodone + Fentanyl + Morphine Share (X28), 

29. # Unique SKUs (X29), 

30. # SKUs in 80 % of all MME Purchases (X30), 

31. # Unique Distributors (X31), 

32. # Distributors in 80 % of all MME Purchases (X32), 

33. Average # Opioid Products per Transaction (X33), 

34. Median # Opioid Products per Transaction (X34), 

35. Standard Deviation # Opioid Products per Transaction (X35), 

36. Maximum # Opioid Products per Transaction (X36), 

37. Average # Distributors per Transaction (X37), 
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38. Median # Distributors per Transaction (X38), 

39. Standard Deviation # Distributors per Transaction (X39), 

40. Maximum # Distributors per Transaction (X40), 

In the above list of variables, X7 – X11 are identical to X1 – X5 except that X7 – X11 are 

additionally scaled by the number of days between successive transactions of the buyer, thus reflecting 

average purchase amount per day rather than per transaction. Further, X12 – X16 are identical to X7 – X11 

except that X12 – X16 are additionally scaled by the population of the county in which the retail buyer is 

located, thus reflecting average purchase amount per day per resident. In contrast to X12 – X16, which use 

the county population, X17 – X21 use the county population that is 65 or older (i.e., relevant population for 

pain medication), thus reflecting the average purchase amount per day per old resident. Variables X22 – 

X28 track the shares of the buyer’s MME purchases that correspond to the 4 main opioid drugs and 

combinations thereof. X29 represents the total number of unique opioid products bought by a buyer over 

the 6-year period, while X30 represents the subset of SKUs within X29 that collectively account for 80 % 

of the buyer’s MME purchases. Similarly, X31 represents the total number of unique distributors from 

whom the buyer buys over the 6-year period, while X32 represents the subset of distributors within X31 

who collectively account for 80 % of the buyer’s MME purchases. The remaining variables, X33 – X40, 

are self-explanatory. In Table 3, we present several descriptive statistics on the full set of 40 input variables 

for all three groups of buyers: (1) training set - unlabeled, (2) validation set – unlabeled, (3) validation set 

– suspicious. 

[INSERT TABLE 3] 

Suspicious buyers buy far fewer SKUs (~ 38), on average, than unlabeled buyers (~ 56). In other words, 

suspicious buyers concentrate their opioid buying on a smaller number of SKUs. Suspicious buyers also 

buy from more distributors (~ 5), on average, when compared to unlabeled buyers (~ 3.4).  Armed with 

these preliminary insights, we next build an anomaly detection algorithm to detect suspicious buyers 

(“anomalies”) in a buyer population using the full set of 40 input variables. 



 14

Anomaly Detection Algorithm 

Let i refer to a retail buyer. Define Yi = 1 if i is a suspicious buyer, and Yi = 0 if i is an unlabeled 

buyer. This is the predictive outcome of interest. Let Xi = [Xi1 Xi2 … Xi, 40]’ be a 40-dimensional column 

vector denoting the input variables of buyer i. These input variables, as listed in the previous section, 

represent purchase patterns of buyer i.  The goal of the anomaly detection algorithm is to predict Yi based 

on Xi. The anomalous outcome, Yi = 1, is specifically of interest. Since the outcome of interest represents 

only 0.37 % of the 50,188 randomly sampled buyers in our dataset (188 out of 50,188), a supervised 

learning algorithm will not work well for our predictive goal because of the scarcity of data records 

representing suspicious buyers (Yi = 1). An anomaly detection algorithm, instead, would treat the scarce 

outcome as an “outlier” and learn how to predict outlier data records in the data using “regular” data records, 

which represent unlabeled buyers (Yi = 0). Further, when there are many different types of suspicious 

buyers (representing sub-classes of suspicious buyers), as is quite likely in our case, a supervised learning 

algorithm will be rendered even more infeasible. This is why we use an anomaly detection algorithm in our 

predictive application. In doing this, we introduce anomaly detection to the marketing literature. 

We have two mutually exclusive sets of data, the training set which contains 25,000 unlabeled 

buyers (i = 1, …, 25000), and the validation set which contains 25,000 unlabeled buyers and 188 suspicious 

buyers (i = 25001, …, 50188). On the training set, X1, …, X25000 represent the input variable vectors. On 

the validation set, while X25001, …, X50188 represent the input variable vectors, Y25001, …, Y50188 represent 

the outcomes of interest. In other words, heterogeneous outcomes of interest are only observed within the 

validation set, taking the value Yi = 1 for 188 buyers, and the value Yi = 0 for 25,000 buyers. In the training 

set, however, since Yi = 0 for all buyers, the outcome variable is not useful from an analysis standpoint. We 

explain our anomaly detection algorithm (which is a density-based algorithm) next.6 

                                                 
6  We compare our algorithm, which is our original modeling contribution, to four popular anomaly detection 
algorithms from the machine learning literature: (1) Multivariate Gaussian Density (MGD), (2) Independent Gaussian 
Density with Principal Components (IGD w/ PCA), (3) Isolation Forest (IFOR), and (4) IFOR with Principal 
Components (IFOR w/ PCA). Our algorithm outperforms those four comparison algorithms in terms of predictive 
accuracy. 
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Step 1 (Training): For each input variable, Xj (j = 1, …, 40), we calculate the sample estimates of the mean 

(j) and standard deviation (j) across the 25,000 buyers in the training set, as shown below. 

𝜇௝ ൌ  
ଵ

ଶହ଴଴଴
∑ 𝑋௜௝

ଶହ଴଴଴
௜ୀଵ , 

𝜎௝ ൌ  
ଵ

ଶହ଴଴଴ିଵ
∑ ሺ𝑋௜௝ െ 𝜇௝ሻ ଶଶହ଴଴଴

௜ୀଵ  ,                        

                                                                                                                       (1) 

Step 2 (Validation): For each buyer, i (i = 25001, …, 50188) in the validation set, we calculate the univariate 

Gaussian density, f (Xij), that is associated with each input variable, Xij (j = 1, …, 40), under the assumption 

that the mean and standard deviation of the Gaussian density are (j) and (j), respectively, as calculated in 

step 1.7 The calculation of the Gaussian density is shown below. 

𝑓൫𝑋௜௝൯ ൌ  
ଵ

ఙೕ√ଶగ
𝑒

ି
భ
మ

ሺ
೉೔ೕషഋೕ

഑ೕ
ሻమ

 , 

                                          (2) 

Step 3 (Validation): We assume arbitrary non-negative (small-valued) threshold parameters 1, …, 40 for 

the 40 input variables, Xj (j = 1, …, 40). Then for each buyer, i (i = 25001, …, 50188) in the validation set, 

we predict whether they are a suspicious buyer (Yi = 1) or not (Yi = 0), according to the following 

disjunctive rule across the 40 input variables. 

൜
𝑌௜ ൌ 1         𝑖𝑓 𝑓ሺ𝑋௜ଵሻ  ൑  𝜀ଵ 𝑜𝑟 𝑓ሺ𝑋௜ଶሻ  ൑  𝜀ଶ 𝑜𝑟 … 𝑓ሺ𝑋௜ସ଴ሻ  ൑  𝜀ସ଴
𝑌௜ ൌ 0                                                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                     

 

                                                 (3) 

                                                 
7 This procedure is valid if the frequency histogram of each input variable looks symmetric and bell-shaped (i.e., 
Gaussian), otherwise one must transform the input variable, using a suitable transformation function (logarithm, 
square root etc.), to yield a Gaussian shape. In our case, we find that such transformations do not improve the predictive 
accuracy of the algorithm. 
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Step 4 (Validation): Having predicted the outcome of interest, Yi, for all 25,188 buyers in the validation 

set, we summarize the predicted versus actual values of Yi in the form of a 2*2 confusion matrix, as shown 

below. 

 

                                                                                                            (4) 

Step 5 (Validation): We calculate the precision and recall measures of predictive accuracy that are 

associated with the confusion matrix of Step 4, as shown below. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ  
்௉

்௉ାி௉
 , 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ  
்௉

்௉ାிே
， 

                                   (5) 

Step 6 (Validation): We calculate the harmonic mean of the precision and recall measures of predictive 

accuracy, as calculated in step 5, to yield the F-1 score, as shown below. 

𝐹 െ 1 ൌ  
ଶൈሺ௉௥௘௖௜௦௜௢௡ൈோ௘௖௔௟௟ሻ

ሺ௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟ሻ
， 

                                   (6) 

The F-1 score is a composite measure of predictive accuracy that takes in to account the dual abilities of 

our algorithm to both correctly predict observed anomalies (recall), as well as yield anomaly predictions 

that are accurately vindicated among validation buyers (precision). This is a commonly used accuracy 

metric for implementable machine learning algorithms. 



 17

 

Step 7 (Validation): We check to see if the F-1 score calculated in step 6 has reached its maximum possible 

value. If not, we go back to step 3 and change our assumed values of threshold parameters 1, …, 40 for 

the 40 input variables, Xj (j = 1, …, 40) and then cycle through steps 4-7 until the F-1 score reaches its 

maximum possible value. Once the best algorithmic performance has been achieved, we summarize the 

predictive performance of the anomaly detection algorithm. We report not only precision, recall, and F-1 

score (as explained above in equations (5) and (6)), but also specificity and negative predictive value, as 

summarized below. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ  
்ே

்ேାி௉
 , 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 ൌ  
்ே

்ேାிே
 ,  

                                    (7) 

Our modeling goal is to estimate the threshold parameters, 1, …, 40, to enable anomaly detection. This is 

done so as to achieve the highest level of predictive accuracy for our anomaly detection algorithm (which 

is built using data on unlabeled training buyers, in step 1 above), in terms of successfully maximizing the 

F-1 score metric among validation buyers (as explained in steps 2-7 above). However, this raises a key 

implementation challenge: Given the discontinuity of the disjunctive rule of step 3, gradient-based 

optimization cannot be used. We must, instead, sample an arbitrarily large number of (non-negative) values 

for each threshold parameter, and then figure out which combination of threshold parameters maximizes 

the F-1 score. This, in turn, raises the question of what range of values to sample each threshold parameter 

from. Even if valid ranges can be identified, implementing the algorithm becomes computationally 

prohibitive since the number of combinatorial possibilities becomes very large (even with as few as 10 grid 

points per threshold parameter, we have 1040 possibilities to consider). This challenge is uniquely faced by 

our algorithm compared to, say, the MGD, which involves the estimation of just one threshold parameter, 

a much easier task. However, we believe that our algorithm’s flexibility for anomaly detection is an asset 

compared to traditional machine learning algorithms such as MGD, IGD w/ PCA, IFOR and IFOR w/ PCA. 
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We use the following heuristic procedure, based on the principle of forward selection of input variables, in 

order to implement our algorithm in a computationally convenient manner. 

1. We use just one input variable at a time, Xj (j = 1, …, 40), and cycle through steps 1-7 above to 

maximize the predictive F-1 score (which is easy to do since it involves one-dimensional 

optimization). This yields 40 different values of maximized F-1 score. Choose the largest value 

among these and identify the corresponding variable as the most important input variable for the 

anomaly detection task. Its threshold parameter is set at its estimated value. 

2. Now, we add a second input variable to the input variable that has been identified as first-best in 

the previous step. Again, we add just one input variable at a time, Xj (j = 1, …, 40), but not counting 

the first-best variable identified in the previous step, so allowing for 39 possibilities, and cycle 

through steps 1-7 above to maximize the predictive F-1 score (which is again one-dimensional 

optimization since the first-best variable’s threshold parameter has already been estimated). This 

yields 39 different values of maximized F-1 score. Choose the largest value among these (which 

must be at least as large as the maximized F-1 score of step 1) and identify the corresponding 

variable as the second-most important input variable for the anomaly detection task. Its threshold 

parameter is set at its estimated value. 

3. Now, we add a third input variable to the two input variables that have been identified as first-best 

and second-best in the previous two steps. Again, we add just one input variable at a time, Xj (j = 

1, …, 40), but not counting the first-best and second-best variables identified in the previous two 

steps, so allowing for 38 possibilities, and cycle through steps 1-7 above to maximize the predictive 

F-1 score (which is again one-dimensional optimization since the threshold parameters for the first-

best and second-best variables have already been estimated). This yields 38 different values of 

maximized F-1 score. Choose the largest value among these (which must be at least as large as the 

maximized F-1 score of step 2) and identify the corresponding variable as the third-most important 

input variable for the anomaly detection task. Its threshold parameter is set at its estimated value. 

4. Etc. 
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In line with the above procedure, we sequentially keep adding one input variable at a time in order 

to improve the F-1 score until a point comes when the F-1 score does not improve from adding 

another input variable. We stop at that point. This procedure works well to identify the combination 

of input variables, from our full set of 40, which is sufficient to maximize the predictive accuracy 

of our algorithm. While we acknowledge that the forward selection procedure may not yield a 

globally optimal solution (that corresponds to the situation of simultaneously estimating the 40 

threshold parameters), in our empirical application, using our proposed procedure leads to a 

predictive accuracy that is much higher than that of four popular anomaly detection algorithms 

from the AI literature, MGD, IGD w/ PCA, IFOR, and IFOR w/ PCA (see Ruff et al. 2021 for a 

current review of machine learning algorithms for anomaly detection). This completes our 

exposition of our proposed anomaly detection algorithm. 

 

 
Empirical Results 

First, we look at how our anomaly detection algorithm fares, relative to four comparison machine-

learning algorithms (MGD, IGD w/ PCA, IFOR, IFOR w/ PCA), in predicting suspicious buyers in the 

validation set. The predictive accuracy comparisons are given in Table 4. In terms of five predictive metrics 

– precision, recall, F-1 score, AUC, Lift -- we see that our proposed algorithm outperforms the four 

comparison algorithms. We test a special case of our proposed algorithm where we first undertake PCA in 

order to reduce the 40 input variables to a small number (~15) of principal components, and then use the 

principal components as the bases for anomaly detection. This special case algorithm does not do as well 

as our algorithm which works directly with input variables. Interestingly, however, the empirical 

performance of IFOR w/ PCA is superior to that of IFOR. Our algorithm yields maximum possible precision 

(100 %), with an impressive F-1 score (61 %). For policy makers and drug distributors (such as McKesson), 

what a precision of 100 % means is that if our anomaly detection algorithm is used to flag suspicious buyers, 

the probability of the algorithmic prediction being correct would be 100 %. Given that anomalies are 
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extremely rare outcomes in the data, plus since the US justice system tends to err on the side of 

minimizing false positive predictive errors (falsely accusing innocent retail buyers of suspicious 

orders), having 100 % precision is a very important feature of our predictive algorithm. We are 

willing to sacrifice some recall (and increase false negative errors) in order to enable the practical 

adoption of our proposed algorithm. We plot the receiver operating characteristics (ROC) curve, i.e., 

recall versus 1-specificity, for each algorithm and calculate the area under the curve (AUC) as an additional 

metric of predictive accuracy. We also plot the precision versus recall curve for each algorithm and calculate 

the area under the curve (Lift) as a final metric of predictive accuracy. In terms of both AUC (72 %) and 

Lift (72 %), our algorithm outperforms the comparison algorithms. Overall, therefore, our proposed 

anomaly detection algorithm does very well in terms of its ability to flag suspicious orders in the distribution 

channel before the drugs actually get shipped to the retail buyer. 

[Insert Table 4 here] 

We present the confusion matrix associated with our anomaly detection algorithm in Table 5. 

Consistent with our above discussion about the tradeoff between precision and recall, we see that there are 

zero false positive errors made by our algorithm. However, the false negative error rate is moderately high 

(recall of 44 %) in order to enable this maximum precision (100 %). Our maximized F-1 score compares 

well to F-1 scores that have been recovered in successful anomaly detection applications (e.g., fraud 

detection, machine failure etc.) in the AI literature. 

[Insert Table 5 here] 

We report the input variables that assist our detection of suspicious buyers, in decreasing order of 

importance, in Table 6. First, we notice that only 7 out of our full set of 40 input variables are needed to 

enable the high predictive accuracy of our algorithm. The most important input variable turns out to be 

median MME per day (X9).  MME per day is calculated as follows: each time a buyer places an order, we 

look at the quantity of MME ordered by the buyer during their previous transaction, and then divide that 

quantity by the number of days elapsed since the buyer’s previous transaction until the current transaction. 
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This measure reflects the (possibly time-varying) rate at which the buyer sells opioids to their patients. It is 

not surprising that this variable is most predictive of suspicious buyer behavior since the fundamental 

product that is bought by pain patients and, therefore, the retail buyer who sells to pain patients, is morphine 

(rather than the specific drug product – oxycodone or hydrocodone -- that treats the patients’ pain). The 

second most important variable is Oxycodone share (X23), i.e., the share of a retail buyer’s past purchases 

of MME that is accounted for by Oxycodone. Given that our study period spans 2006-2012, when 

OxyContin was a widely abused drug across the country, this finding is also not surprising. Next to tracking 

the amount of morphine equivalents in a retail buyer’s order, tracking specifically the amount of Oxycodone 

in that order would play a vital role in flagging an order as possibly suspicious. The third most important 

variable is Morphine share (X25), i.e., the share of a retail buyer’s past purchases of MME that is accounted 

for by Morphine (the actual drug product itself, rather than the chemical morphine equivalents delivered 

therein). The fourth most important variable is # Unique Distributors (X30), i.e., the total number of 

distributors from whom a retail buyer has sourced their past opioid purchases. Suspicious buyers tend to 

distribute their purchases across many distributors in order to decrease the chance of being flagged for 

placing suspiciously large orders for opioids from a single distributor. The fifth and sixth most important 

variables are Median MME per Transaction (X3) and Average MME per Transaction (X1), respectively. 

That these variables are closely related to, yet additionally contribute beyond, median MME per day (X9), 

in predicting suspicious orders, reiterates the fact that tracking a retail buyer’s historical purchases of 

morphine equivalents in multiple ways is critical for early identification of suspicious orders. The seventh 

and final input variable of interest is # Distributors in 80 % of MME Purchases (X32), which is a variant of 

X30 discussed above. However, we find that suspicious buyers tend to concentrate their MME buying 

among a very small (typically, one) distributor. This suggests an interesting combination of seemingly 

opposite tactics used by suspicious buyers to evade detection by the justice department. On the one hand, 

they place orders from a large number of distributors overall, which effectively camouflages their detection 

as suspicious buyers using the transactional data of large distributors (who are possibly more monitored by 

the DEA). On the other hand, these buyers tend to concentrate their real buying of opioids from just one 
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distributor, possibly a small distributor who is less likely to fall under the surveillance dragnet of the justice 

department, who is less scrupulous in terms of reporting suspicious buying activity to the DEA. 

Overall, what Table 6 shows is that as long as one diligently tracks the mentioned 7 variables at the 

buyer-level in real-time, updating the value of each variable whenever a new order gets placed by a buyer, 

our algorithm can be efficiently used to flag suspicious orders in real time by drug distributors so that they 

can swiftly report them to the DEA. In order to test the practical efficacy of our algorithm, we need drug 

distributors and the DEA to partner and work with us in a pilot study application. We are hopeful that we 

can achieve this in the future. 

[Insert Table 6 here] 

In order to further elucidate the substantive implications of our proposed anomaly detection 

algorithm, we report in Table 7 the top 25 retail buyers in the validation set who are predicted most likely 

to be suspicious buyers by our algorithm. All of these buyers are, in fact, suspicious buyers (i.e., actual Yi 

= 1), as noted earlier when we reported that our algorithm achieves 100 % precision in identifying 

suspicious buyers. Interestingly, we see that all these buyers are associated with the very high median MME 

per day (X9), i.e., ~ 2344665 MME per day, and Oxycodone share (X23), i.e., ~ 100 %, among all buyers 

in the validation set. They are also associated with the lowest possible value of # Distributors in 80 % of 

MME Purchases (X32), i.e., 1. On the remaining 4 input variables, there is more heterogeneity among these 

25 buyers. Interestingly, we find that these 25 buyers show suspicious activity on all 7 input variables, i.e., 

the values of all 7 variables for these buyers fall in to the tail regions of their frequency distributions such 

that all 7 densities are smaller than their estimated density thresholds as reported in Table 6. In other words, 

the signals of anomaly detection are very strong for these egregiously suspicious buyers. Suppose the DEA 

invests human and financial resources to perform further due diligence and investigation on the top 25 

suspicious buyers, as flagged by our algorithm, in any given month. Such investigation efforts may well pay 

off since the chance of a false positive error in these predictions is practically non-existent given the 

strengths of the signals in Table 7.This renders our algorithm very valuable for practical use. 

[Insert Table 7 here] 
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In order to demonstrate the practical use of our proposed anomaly detection algorithm, we report 

in Table 8 the top 25 retail buyers in the training set who are predicted most likely to be suspicious buyers 

by our algorithm. Since the buyers in the training sample are all unlabeled, this prediction exercise is an 

example of what the DEA can do with our predictive tool. Interestingly, we see that all these buyers are 

associated with the same high value of median MME per day (X9), i.e., 80141 MME per day, as well as 

Oxycodone share (X23), i.e., ~ 33 %. They are also associated with the lowest possible value of # 

Distributors in 80 % of MME Purchases (X32), i.e., 1. On the remaining 4 input variables, there is quite a 

bit of heterogeneity among these 25 buyers. 

[Insert Table 8 here] 

In order to test the quality of these predictions, we performed Google searches on these 25 retail 

buyers. We summarize the results of our Google searches in Table 9. We find that 4 out of these 25 buyers 

(shaded in yellow in Table 9) committed clear cases of opioid fraud. We also uncover news articles 

associated with opioid fraud that can be somewhat tied, but not conclusively, to another 4 out of these 25 

buyers. This lends further faith to the practical viability of our anomaly detection algorithm to identify 

suspicious retail buyers. 

[Insert Table 9 here] 
 

Conclusions 

Over the past 20 years, about 500,000 Americans have died of opioid overdoses. This has been the 

most pressing health epidemic in the US. According to the US Surgeon General, 250 million prescriptions 

for opioids are written in the US each year. Our research was spurred by the recent availability of a massive 

database, called ARCOS, released by the DEA in 2019, which tracks the shipments of opioids through the 

supply chain. We propose a predictive capability to detect suspicious orders of opioid drugs at the source 

before drug distributors can release drug shipments to drug retailers. Our predictive approach achieves a 

precision of 100 % on the ARCOS data in terms of identifying suspicious buyers -- as revealed by observed 



 24

convictions on the DEA website -- by eliminating false positive errors. Our approach offers new hope in 

our nation’s fight against the opioid epidemic. 

We believe that our proposed predictive algorithm can also be leveraged across more than 100 other 

controlled substances, beyond opioid drugs, that are tracked by ARCOS. Our goal is to open the door to a 

breakthrough private-public pilot to test the creation of a real-time supply-chain detection and alerting 

system. Supported by both government and industry, it would address an ongoing blind spot in the opioid 

supply chain that continues to leave citizen communities at risk. An advanced detection and alert system 

will require rethinking of existing public policy in several areas, such as the following: (1) Data sharing 

and cross-agency communication; (2) Revised and modernized data reporting; (3) Funding sources and 

spending needs for system maintenance; (4) Response guidance when transactions are flagged. 

Some important caveats are in order. First, as prescription opioids become harder to come by, users 

turn to heroin and other more dangerous street drugs. Therefore, an unintended consequence of better 

monitoring of suspicious legal shipments of opioids may be an increased incidence of unmonitored drug 

distribution on the streets. This is not unlike alcohol prohibition in the 1930s leading to bootlegging and 

increased street crime in the streets of Chicago. Second, the recent appearance of counterfeit versions of a 

particularly potent synthetic opioid, Fentanyl, is further driving up the body count of drug overdose deaths. 

This means that a multi-pronged policy approach, which tracks not only official shipments of opioids (as 

represented in ARCOS) but also unofficial shipments of counterfeit opioids and illegal drugs on the street, 

would be necessary to effectively address the national drug overdose epidemic. We leave these important 

issues for future research. Our research is an important first step. Aggressive marketing practices by Purdue 

Pharma, which are endemic to marketing practices across both the pharmaceutical industry and other 

industries where personal selling plays an important role, were largely responsible for the indiscriminate 

use of powerful opioids to treat not just chronic pain but also mild to moderate pain. This is what created 

and fueled the opioid overdose epidemic. Given this somber history, it is incumbent on the marketing 

community to acknowledge, as well as make amends for, its role in having created this societal problem. 

As values-based research scholars in marketing, we present our research as a humble effort in this direction. 
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TABLE 1: TOP 50 OPIOID STOCK KEEPING UNITS (SKUs) 

 
SKU Manufacturer  API Drug Product 

HYDROCODONE BIT. 10MG/ACETAMINOPHEN Actavis Pharma, Inc. 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 
HYDROCODONE BIT/ACETAMINOPHEN 

5MG/50 SpecGx LLC 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 
OXYCODONE HCL/ACETAMINOPHEN 

5MG/325M SpecGx LLC OXYCODONE HYDROCHLORIDE OXYCODONE 
BUPRENORPHINE/NALOXONE 8MG/2MG 

(SUBO Indivior Inc. BUPRENORPHINE BUPRENORPHINE 
HYDROCODONE BIT 5MG/ACETAMINOPHEN 

50 Actavis Pharma, Inc. 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 

HYDROCODONE BIT/ACETA 7.5MG/500MG US SpecGx LLC 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 

HYDROCODO.BIT/APAP 7.5MG/750MG USP T SpecGx LLC 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 

HYDROCODONE BIT/ACETA 10MG/325MG USP SpecGx LLC 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 
METHADONE HYDROCHLORIDE TABLETS, 

USP SpecGx LLC METHADONE HYDROCHLORIDE METHADONE 

HYDROCODONE BIT/ACETA 10MG/500MG USP SpecGx LLC 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 

HYDROCODONE BIT/ACETA 7.5MG/325MG US SpecGx LLC 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 

HYDROCODONE.BIT./ACET.,10MG & 325MG/ Par Pharmaceutical 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 

HYDROCODONE BIT/ACETA 5MG/325MG USP SpecGx LLC 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 

TUSSIONEX 10MG/5ML HYDROCODO.BIT Unither Manufacturing LLC 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 
OXYCODONE HYDROCHLORIDE TABLETS 

5MG SpecGx LLC OXYCODONE HYDROCHLORIDE OXYCODONE 
ENDOCET - 10MG OXYCODONE.HCL/325MG A Par Pharmaceutical OXYCODONE HYDROCHLORIDE OXYCODONE 

OXYCODONE HCL/ACETAMINOPHEN 
10MG/325 SpecGx LLC OXYCODONE HYDROCHLORIDE OXYCODONE 

HYDROCODONE BITARTRATE AND ACETA 
5MG Actavis Pharma, Inc. 

HYDROCODONE BITARTRATE 
HEMIPENTAHYDRATE HYDROCODONE 

HYDROCODO.BIT 10MG&AC USP TAB SpecGx LLC 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 

HYDROCODONE BITARTRATE AND ACETA 7.5 Actavis Pharma, Inc. 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 

HYDROCODONE BIT.7.5MG/ACETAMINOPHEN Actavis Pharma, Inc. 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 

HYDROCODONE BIT./ACETAMINOPHEN TABS. Amneal Pharmaceuticals LLC 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 

HYDROCODONE BITARTRATE 7.5MG/ACETAMI Actavis Pharma, Inc. 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 
OXYCODONE.HCL/APAP 10MG/325MG TABS Actavis Pharma, Inc. OXYCODONE HYDROCHLORIDE OXYCODONE 

METHADONE HCL USP 10MG TABLET West-Ward Pharmaceuticals Corp. METHADONE HYDROCHLORIDE METHADONE 
FENTANYL 72HR 25MCG/HR TDS (2.55MG T Mylan Pharmaceuticals, Inc. FENTANYL BASE FENTANYL 
FENTANYL 72HR 50MCG/HR TDS (5.10MG T Mylan Pharmaceuticals, Inc. FENTANYL BASE FENTANYL 

SUBOXONE - BUPRENORPHINE 
8MG/NALOXON Indivior Inc. BUPRENORPHINE BUPRENORPHINE 

HYDROCODONE BIT. 7.5MG/ACETAMINOPHEN Actavis Pharma, Inc. 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 

HYDROCOD.BIT./ACET.,7.5MG&500MG/15ML Par Pharmaceutical 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 
FENTANYL 72HR 100MCG/HR TDS (10.2MG Mylan Pharmaceuticals, Inc. FENTANYL BASE FENTANYL 

HYDROMORPHONE.HCL USP;4MG/TAB SpecGx LLC HYDROMORPHONE HYDROCHLORIDE HYDROMORPHONE 
OXYCONTIN - 40MG OXYCODONE.HCL CONTR Purdue Pharma LP OXYCODONE HYDROCHLORIDE OXYCODONE 

HYDROCOD.BIT.& APAP,10MG/660MG/TAB SpecGx LLC 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 
OXYCONTIN (OXYCODONE.HCL) 

CONTROLLED Purdue Pharma LP OXYCODONE HYDROCHLORIDE OXYCODONE 
CODEINE PHOSPHATE/ACETAMINOPHEN 

30MG Teva Pharmaceuticals USA, Inc. CODEINE PHOSPHATE.1/2H20 CODEINE 

HYDROCODONE BIT./IBUPROFEN;7.5MG & 2 Teva Pharmaceuticals USA, Inc. 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 

HYDROMET 5MG/5ML SYR. Actavis Pharma, Inc. 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 
HYDROMORPHONE.HCL USP;2MG/TAB SpecGx LLC HYDROMORPHONE HYDROCHLORIDE HYDROMORPHONE 

FENTANYL 72HR 75MCG/HR TDS (7.65MG T Mylan Pharmaceuticals, Inc. FENTANYL BASE FENTANYL 
OXYCODONE HYDROCHLORIDE 30MG 

TABLET SpecGx LLC OXYCODONE HYDROCHLORIDE OXYCODONE 

HYDROCODONE.BIT & ACETA 10MG & 500M Par Pharmaceutical 
HYDROCODONE BITARTRATE 

HEMIPENTAHYDRATE HYDROCODONE 
OXYCONTIN - 80MG OXYCODONE.HCL CONTR Purdue Pharma LP OXYCODONE HYDROCHLORIDE OXYCODONE 
OXYCODONE.HCL/APAP 7.5MG/325MG TABS Actavis Pharma, Inc. OXYCODONE HYDROCHLORIDE OXYCODONE 
FENTANYL 50MCG/ML INJECTABLE SOLUTIO Hospira, Inc. FENTANYL BASE FENTANYL 

ACETAMINOPHEN AND CODEINE PHOSPHATE Teva Pharmaceuticals USA, Inc. CODEINE PHOSPHATE.1/2H20 CODEINE 
OXYCODONE HCL/ACETAMINOPHEN 7.5MG/32 SpecGx LLC OXYCODONE HYDROCHLORIDE OXYCODONE 

MORPHINE SULFATE 30MG ER TABLET; 100 SpecGx LLC 
MORPHINE SULFATE 

PENTAHYDRATE(I.E.,5H20) MORPHINE 
CODEINE PHOSPHATE/ACETAMINOPHEN 

30MG SpecGx LLC CODEINE PHOSPHATE.1/2H20 CODEINE 
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TABLE 2: DESCRIPTIVE STATISTICS ON BUYERS 
 

Training Set  Validation Set  Validation Set 
(Unlabeled)  (Unlabeled)  (Suspicious) 

 
Average MME per transaction   252,718   253,506   2,390,467 
 
Median MME per transaction   36,764   37,180   700,326 
 
Maximum MME per transaction   14,512.659  14,762,864  39,291,227 
 
Std. Dev. MME across transactions  1,310,314  1,414,983  5,679,642 
 
Hydrocodone Share    0.342   0.345   0.388 
 
Oxycodone Share    0.042   0.042   0.203 
 
Fentanyl Share     0.302   0.301   0.081 
 
# Unique SKUs     56.55   55.31   37.60 
 
# Distributors     1.05   1.05   1.09 
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TABLE 3 (a): DESCRIPTIVE STATISTICS ON TRAINING SET – UNLABELED BUYERS 
 
 

Statistic Mean St. Dev. Min Median Max 
avg MME 252,718.500 601,903.900 421.823 16,356.250 2,491,840.000 
std MME 1,310,314.000 4,049,320.000 0 11,978.5 18,386,964
median MME 36,764.340 73,248.700 355.963 5,750.000 293,786.200
coef variation 1.790 2.178 0 1.0 9
max MME 14,512,659.000 42,925,512.000 500.000 54,000.000 182,356,333.000
max-med MME 13,995,122.000 41,457,175.000 0 28,800 175,615,246
avg MME per day  65,014.180 144,130.900 0 598.7 580,734
std MME per day  211,527.500 471,544.300 0 779.6 1,912,014
median MME per day  8,548.308 19,314.770 0 212.5 80,141
max MME per day  2,401,320.000 4,971,878.000 0 3,057.3 15,708,440
max-med MME per day  2,377,532.000 4,924,906.000 0 2,456.1 15,682,190
avg MME per day per person 1.762 4.512 0 0.01 19
std MME per day per person 5.448 14.180 0 0.01 61
median MME per day per person 0.232 0.597 0 0.003 3
max MME per day per person 58.986 153.996 0 0.04 646
max-med MME per day per person 58.529 152.971 0 0.03 641
avg MME per day per old person 8.943 23.136 0 0.04 100
std MME per day per old person 31.413 84.522 0 0.1 380
median MME per day per old person 0.844 2.220 0 0.01 10
max MME per day per old person 351.859 924.189 0 0.2 3,960
max-med MME per day per old person 350.038 920.233 0 0.2 3,944
Hydrocodone Share 0.342 0.432 0 0.1 1
Oxycodone Share 0.042 0.088 0 0 0
Fentanyl Share 0.302 0.393 0 0 1
Morphine Share 0.017 0.040 0 0 0
Hydro Oxy Share 0.398 0.424 0 0.2 1
Hydro Oxy Fen Share 0.700 0.394 0 0.9 1
Hydro Oxy Fen Mor Share 0.739 0.377 0 1.0 1
Num Unique SKU 56.552 87.445 1 5 268
Num SKUs 80 3.270 3.834 1 1 14
Num Unique Dist 3.452 2.708 1 2 10
Num Dist 80 1.080 0.271 1 1 2
Avg Num Products 1.995 1.426 1 1.2 6
Median Num Products 1.700 1.175 1 1 5
Std Num Products 1.044 1.372 0 0.4 4
Max Num Products 7.334 9.202 1 2 30
Avg Num Distributors 1.047 0.091 1 1 1
Median Num Distributors 1.000 0.000 1 1 1
Std Num Distributors 0.112 0.171 0 0 1
Max Num Distributors 1.625 0.917 1 1 4
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TABLE 3 (b): DESCRIPTIVE STATISTICS ON VALIDATION SET – UNLABELED BUYERS 
 
 

Statistic Mean St. Dev. Min Median Max 
avg MME 253,506.800 605,208.900 421.823 16,771.480 2,491,840.000 
std MME 1,414,983.000 4,109,804.000 0.000 90,356.130 18,386,964.000
median MME 37,180.430 73,569.920 356 5,875 293,786
coef variation 2.027 2.072 0.000 1.642 8.984
max MME 14,762,864.000 43,409,601.000 500 53,430 182,356,333
max-med MME 14,207,166.000 41,812,684.000 0 27,000 175,615,246
avg MME per day  72,317.310 140,814.200 3.629 8,638.332 580,733.600
std MME per day  248,819.400 455,694.400 5.336 81,098.370 1,912,014.000
median MME per day  9,586.705 19,199.290 3 1,666.7 80,141
max MME per day  2,847,558.000 4,834,512.000 5 118,877.5 15,708,440
max-med MME per day  2,795,802.000 4,785,166.000 0 112,377.5 15,682,190
avg MME per day per person 1.937 4.440 0.00003 0.086 18.820
std MME per day per person 6.208 13.801 0.00005 0.816 60.910
median MME per day per person 0.254 0.588 0.00002 0.018 2.532
max MME per day per person 63.468 149.449 0.00004 1.192 645.838
max-med MME per day per person 62.907 148.390 0.000 1.092 641.488
avg MME per day per old person 10.119 23.330 0.0001 0.585 100.074
std MME per day per old person 36.562 84.533 0.0002 6.147 379.678
median MME per day per old person 0.970 2.261 0.0001 0.082 9.761
max MME per day per old person 395.020 925.557 0.0001 9.117 3,960.028
max-med MME per day per old person 392.700 921.351 0.000 8.519 3,943.760
Hydrocodone Share 0.345 0.433 0.000 0.056 1.000
Oxycodone Share 0.042 0.088 0.000 0.000 0.325
Fentanyl Share 0.301 0.393 0.000 0.000 0.997
Morphine Share 0.017 0.040 0.000 0.000 0.163
Hydro Oxy Share 0.401 0.425 0.000 0.192 1.000
Hydro Oxy Fen Share 0.702 0.394 0.000 0.930 1.000
Hydro Oxy Fen Mor Share 0.741 0.376 0.000 0.960 1.000
Num Unique SKU 55.309 86.662 1 5 268
Num SKUs 80 3.239 3.819 1 1 14
Num Unique Dist 3.444 2.723 1 2 10
Num Dist 80 1.079 0.269 1 1 2
Avg Num Products 1.978 1.418 1.000 1.227 5.720
Median Num Products 1.687 1.169 1 1 5
Std Num Products 1.194 1.299 0.000 0.802 4.469
Max Num Products 7.216 9.125 1 2 30
Avg Num Distributors 1.047 0.090 1.000 1.000 1.317
Median Num Distributors 1.000 0.000 1 1 1
Std Num Distributors 0.129 0.164 0.000 0.092 0.524
Max Num Distributors 1.619 0.914 1 1 4
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TABLE 3 (c): DESCRIPTIVE STATISTICS ON VALIDATION SET – SUSPICIOUS BUYERS 
 
 

      

      

Statistic Mean St. Dev. Min Median Max 
avg MME 2,390,467.000 5,014,590.000 773.100 36,533.330 18,806,502.000 
std MME 5,679,642.000 12,597,497.000 0.000 169,970.400 47,819,544.000
median MME 700,326.800 1,600,666.000 500 26,950 5,810,925
coef variation 1.492 1.098 0.000 1.464 4.485
max MME 39,291,227.000 93,569,579.000 802 128,325 374,864,080
max-med MME 37,782,160.000 91,490,910.000 0 78,885 367,395,209
avg MME per day  1,029,558.000 2,243,642.000 5.934 34,367.030 7,904,894.000
std MME per day  2,272,611.000 4,785,729.000 8.763 182,113.400 16,509,210.000
median MME per day  239,121.300 587,539.300 5.748 6,833.034 2,344,665.000
max MME per day  16,274,176.000 32,009,255.000 6.020 371,875.000 99,530,880.000
max-med MME per day  15,934,573.000 31,391,557.000 0.000 328,675.600 98,521,630.000
avg MME per day per person 8.457 17.303 0.00003 0.375 67.628
std MME per day per person 23.401 53.669 0.0001 3.749 230.123
median MME per day per person 1.646 3.586 0.00002 0.109 13.397
max MME per day per person 150.688 326.748 0.00004 4.499 1,282.881
max-med MME per day per person 148.518 323.094 0.000 4.461 1,268.501
avg MME per day per old person 20.252 35.931 0.0001 1.570 125.373
std MME per day per old person 54.395 96.327 0.0003 18.759 354.481
median MME per day per old person 3.619 7.289 0.00005 0.313 26.441
max MME per day per old person 439.798 832.322 0.0001 25.094 3,019.215
max-med MME per day per old 
person 

435.878 829.004 0.000 19.752 3,012.595

Hydrocodone Share 0.388 0.460 0 0.1 1
Oxycodone Share 0.203 0.362 0 0 1
Fentanyl Share 0.081 0.195 0 0 1
Morphine Share 0.016 0.049 0 0 0
Hydro Oxy Share 0.591 0.442 0 0.9 1
Hydro Oxy Fen Share 0.682 0.409 0 0.9 1
Hydro Oxy Fen Mor Share 0.722 0.388 0 1.0 1
Num Unique SKU 37.609 66.791 1 6 231
Num SKUs 80 2.255 2.458 1 1 10
Num Unique Dist 4.809 4.154 1 3 15
Num Dist 80 1.250 0.553 1 1 3
Avg Num Products 1.930 1.179 1 1.4 5
Median Num Products 1.701 1.060 1 1 4
Std Num Products 1.130 1.157 0 0.9 4
Max Num Products 6.279 7.624 1 3 28
Avg Num Distributors 1.094 0.164 1 1 2
Median Num Distributors 1.000 0.000 1 1 1
Std Num Distributors 0.200 0.247 0 0.1 1
Max Num Distributors 1.915 1.251 1 1 5
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TABLE 4: PREDICTIVE ACCURACY COMPARISON 
 

Precision Recall  F-1 Score AUC  Lift 

 
Our Algorithm   1.00  0.44  0.61  0.72  0.72 
 
Our Algorithm w/ PCA  0.77  0.27  0.40  0.63  0.52 
 
Comparison Algorithms 
 
MGD    0.94  0.35  0.51  0.68  0.65 
 
IGD w/ PCA   1.00  0.17  0.29  0.58  0.59 
 
IFOR    0.33  0.18  0.23  0.59  0.26 
 
IFOR w/ PCA   0.85  0.27  0.41  0.64  0.56 
 
 
 
TABLE 5: CONFUSION MATRIX YIELDED BY OUR ANOMALY DETECTION ALGORITHM 

 

Actual Y = 1   Actual Y = 0 

 
Predicted Y = 1   83 (TP)    0 (FP) 
 
Predicted Y = 0   105 (FN)   25000 (TN) 
 
 
 

TABLE 6: INPUT VARIABLES THAT ASSIST THE DETECTION OF SUSPICIOUS BUYERS 
 
Variable      Estimated density threshold (j) 

 
1. Median MME per Day (X9)     2.07E-08 

2. Oxycodone Share (X23)     0.009058 

3. Morphine Share (X25)     0.000114 

4. # Unique Distributors (X30)     0.003067 

5. Median MME per Transaction (X3)    1.09E-08 

6. Average MME per Transaction (X1)    4.98E-17 

7. # Distributors in 80 % of MME Purchases (X32)  1.98E-11
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TABLE 7: TOP 25 SUSPICIOUS BUYERS IDENTIFIED AMONG LABELED VALIDATION BUYERS 
 
__________________________________________________________________________________________________ 
 
DEA Number Buyer Name   X9 X23 X25 X30 X3  X1  X32 
     (MME/day) (Oxy) (Morp.) (Dist.) (Med-MME) (Avg-MME) (Dist80) 
________________________________________________________________________________________________________________________ 
 

FB0254918 Beau Boshers, MD 1481143.00 1.000 0.0000 9 3033000.00 388.81 2 

FW1453757 Randall Wolff 1728000.00 1.000 0.0000 9 5670000.00 284.69 1 

AD7585865 Jacobo Dreszer, MD 1350000.00 1.000 0.0000 8 2981250.00 346.00 2 

BC8112637 Cynthia Cadet, MD  1481143.00 1.000 0.0000 8 3198375.00 314.84 2 

BA6733578 Michael Aruta, MD 2073600.00 1.000 0.0000 8 3456000.00 307.04 1 

FD1201196 Roni, Dreszer  1883250.00 1.000 0.0000 7 2787750.00 388.81 1 

FB0003943 Alfred Boyce, DO  2344665.00 1.000 0.0000 6 5810925.00 281.72 1 

FD1749057 Jack Alan Danton, DO  2344665.00 1.000 0.0000 5 5810925.00 284.69 1 

FP1312406 Zvi H Perper, MD  2344665.00 1.000 0.0000 7 5810925.00 91.20 1 

BT5598214 Margy Temponeras, MD 1706400.00 0.995 0.0012 7 4209000.00 1282.88 1 

FH0772257 Hills Pharmacy  2344665.00 0.970 0.0014 15 3770400.00 416.34 3 

BS1314210 Barry M Schultz, MD  2344665.00 0.906 0.0028 9 5810925.00 388.81 1 

AY1916103 Your Gruggist  2344665.00 0.598 0.0007 14 5810925.00 284.87 1 

BC5289055 Holiday CVS  2344665.00 0.123 0.0027 8 3093850.00 1218.36 1 

RH0208567 Houston Maintenance Clinic 824338.20 0.000 0.0000 2 5810925.00 31.39 1 

BU6696073 United Prescription Services 2344665.00 0.000 0.0000 11 3600000.00 429.67 1 

BN3795892 Newcare Home Health Serv. 2344665.00 0.000 0.0000 6 3140125.00 506.83 2 

BW8625785 Wayne Pharmacy 925975.00 0.011 0.0008 9 924250.00 1021.74 1 

FC1881211 Rene Casanova, MD  739607.10 0.968 0.0000 8 5328756.50 39.27 3 

BK4015334 Algirdas J Krisciunas, MD  720000.00 0.770 0.0000 5 2592000.00 37.77 1 

FB1490349 Steven B Brown, MD  660461.50 0.989 0.0000 4 2592000.00 281.72 1 

BT9856002 Treasure Coast Specialty Ph. 620000.00 0.936 0.0011 15 843400.00 1282.88 2 

FM0624139 TJ Mcnichol, MD  550000.00 0.780 0.0000 5 650000.00 48.40 1 

BB0816441 Harriston L Jr Bass, MD  506250.00 0.000 0.0000 1 5810925.00 25.91 1 

AP8271138 Fred J Powell, MD  478636.40 0.997 0.0000 9 1408500.00 1282.88 2 

 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
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TABLE 8: TOP 25 SUSPICIOUS BUYERS IDENTIFIED AMONG UNLABELED TRAINING BUYERS 
 
__________________________________________________________________________________________________ 
 
DEA Number Buyer Name   X9 X23 X25 X30 X3  X1  X32 
     (MME/day) (Oxy) (Morp.) (Dist.) (Med-MME) (Avg-MME) (Dist80) 
________________________________________________________________________________________________________________________ 
 
BV3682514 VA Medical Center   80141 0.3246 0.1632 10 293786  1.00E-09  1 
 
AK3360904 Westside Neighborhood  80141 0.3246 0.1632 4 293786  1.64E+02  1 
 
BF3905518 John Bradley VA Clinic  80141 0.3246 0.1632 3 293786  1.00E-09  1 
 
AV4317447 Department of Veterans  80141 0.3246 0.1273 10 293786  8.07E+00  1 
 
FP2478825 Prescott Valley Pharmacy  80141 0.3246 0.1236 6 202000  1.77E-03  1 
 
AV4674556 Veterans Admin Med Center  80141 0.3246 0.1111 10 293786  1.14E+02  1 
 
AV6023903 Department of Veterans Affairs 80141 0.3246 0.1017 8 293786  2.38E+00  1 
 
BV6917958 Vaden Corp.   80141 0.3246 0.0892 7 259825  8.84E+01  1 
 
BP5432365 Primary Care Center Pharmacy 80141 0.3246 0.0833 3 293786  7.23E-04  1 
 
AV4291869 VA Medical Center   80141 0.3246 0.0828 5 293786  6.62E+00  1 
 
BF7800572 Fred’s Pharmacy   80141 0.3246 0.0826 6 238751  2.65E-03  1 
 
BS7087237 Smith’s Food & Drug  80141 0.3246 0.0822 4 135000  1.77E-02  1 
 
AG1001988 Kaiser Foundation Health Plan, WA 80141 0.3246 0.0776 3 271875  1.00E-09  1 
 
FU1700512 Upstate Pharmacy Cross Creek 80141 0.3246 0.0720 4 293786  6.46E+02  1 
 
AU6389224 USAF – 377th Medical Group / SGSL 80141 0.3246 0.0720 8 215000  3.53E+01  1 
 
FT1135385 Town and Country Drugs  80141 0.3246 0.0628 9 148512  5.82E+01  1 
 
BF6708905 Family Pharmacy   80141 0.3246 0.0488 10 166862  8.23E-02  1 
 
BP9638810 Professional Pharmacy  80141 0.3246 0.0479 10 179937  3.05E+01  1 
 
BG7457294 Giant Pharmacy #363  80141 0.3246 0.0476 6 179500  2.80E-03  2 
 
FA2626553 Asheville Highway Pharmacy, Inc. 80141 0.3246 0.0469 4 293786  1.71E-03  1 
 
BV8122739 VA Medical Center   80141 0.3246 0.0462 4 266875  3.38E+01  1 
 
RL0383276 Hui-Yin Li   80141 0.3246 0.0455 1 293786  1.00E-09  1 
 
AV4593287 VA Medical Center   80141 0.3246 0.0438 8 293786  8.54E+01  1 
 
FS2423678 St. Mina and Pope Kyrillos LLC 80141 0.3246 0.0430 1 293786  4.42E-02  1 
 
BJ7649152 Joe’s Pharmacy   80141 0.3246 0.0424 9 168525  2.91E-03  1 
 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
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TABLE 9: GOOGLE SEARCH RESULTS ON THE TOP 25 IDENTIFIED SUSPICIOUS BUYERS 
 
__________________________________________________________________________________________________ 
 
DEA Number Buyer Name   Infraction 
 
________________________________________________________________________________________________________________________ 
 
BV3682514 VA Medical Center   Healthcare inspection for alleged improper prescription in November 2013. 
      http://www.va.gov/oig/pubs/VAOIG-13-00133-12.pdf 
 
AK3360904 Westside Neighborhood   
BF3905518 John Bradley VA Clinic   
AV4317447 Department of Veterans   
 
FP2478825 Prescott Valley Pharmacy  News report says nearly 7 million opioid pills were dispensed at a Walgreens in Prescott 
from 2006 – 2012. https://www.azcentral.com/story/news/local/arizona-health/2019/07/25/millions-opioid-pills-flowed-arizona-pharmacies-
prescription-drug-boom/1801196001 
 
AV4674556 Veterans Admin Med Center   
AV6023903 Department of Veterans Affairs  
BV6917958 Vaden Corp.    
BP5432365 Primary Care Center Pharmacy  
 
AV4291869 VA Medical Center   Many controversies with quality of care; complaints about painkillers; easy-to-fill 
prescriptions; theft of opioids. https://www.daytondailynews.com/specials/left-behind-scandal-at-the-va/ 
 
BF7800572 Fred’s Pharmacy    
BS7087237 Smith’s Food & Drug   
AG1001988 Kaiser Foundation Health Plan, WA  
 
FU1700512 Upstate Pharmacy Cross Creek Wife arrested after issuing blank prescriptions for opioids. 
https://www.foxcarolina.com/news/warrants-upstate-doctor-wife-arrested-after-issuing-blank-prescriptions-for-opioids/article_6e1a99ad-9c21-5d64-
8bbe-84714f827a63.html 
 
AU6389224 USAF – 377th Medical Group / SGSL  
FT1135385 Town and Country Drugs   
BF6708905 Family Pharmacy    
BP9638810 Professional Pharmacy   
BG7457294 Giant Pharmacy #363   
FA2626553 Asheville Highway Pharmacy, Inc.  
 
BV8122739 VA Medical Center   VA theft of opioids; https://www.nbcnews.com/storyline/va-hospital-scandal/opioid-theft-
missing-prescriptions-prompts-investigation-va-hospitals-staff-n723291 
 
RL0383276 Hui-Yin Li   80141 0.3246 0.0455 1 293786  1.00E-09  1 
 
AV4593287 VA Medical Center   VA theft of opioids; https://www.nbcnews.com/storyline/va-hospital-scandal/opioid-
theft-missing-prescriptions-prompts-investigation-va-hospitals-staff-n723291 
 
FS2423678 St. Mina and Pope Kyrillos LLC They have closed down. 
 
BJ7649152 Joe’s Pharmacy   Shut down after opioid investigations; https://news-bulletin.com/joes-pharmacy-shuts-
down-after-opioid-investigations 
 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
 
Shaded in yellow are cases of retail buyers committing opioid fraud; shaded in grey, while also involving fraud, cannot be conclusively tied to the 
retail buyer in question. 
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FIGURE 1: OPIOID OVERDOSE DEATHS IN THE US FROM 1999 TO 2019 
 
 

 
 
 

FIGURE 2: DISTRIBUTION CHANNEL STRUCTURE FOR OPIOIDS 
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FIGURE 3: OPIOID DRUGS – A CATEGORY BREAKDOWN 
 

 
 
 
 

FIGURE 4: SAMPLING BUYERS FROM THE ARCOS DATASET 
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FIGURE 5: SUSPICIOUS BUYERS OVERLAID ON THE US MAP 
 

 


